e content for students of patliputra university

B. Sc. (Honrs) Part 1paper 1

Subject:Mathematics

Title/Heading of topic:Set, Subset &Power set

By Dr. Hari kant singh

Associate professor in mathematics

Rrs college mokama patna

Set

<u>Definition</u>: A <u>set</u> is a (unordered) collection of objects. These objects are sometimes called <u>elements</u> or <u>members</u> of the set. (Cantor's naive definition)

Examples:

Vowels in the English alphabet

$$V = \{ a, e, i, o, u \}$$

First seven prime numbers.

$$X = \{ 2, 3, 5, 7, 11, 13, 17 \}$$

Representing sets

Representing a set by:

- 1) Listing (enumerating) the members of the set.
- 2) Definition by property, using the set builder notation {x | x has property P}.

Example:

Even integers between 50 and 63.

1)
$$E = \{50, 52, 54, 56, 58, 60, 62\}$$

2)
$$E = \{x | 50 \le x \le 63, x \text{ is an even integer} \}$$

If enumeration of the members is hard we often use ellipses.

Example: a set of integers between 1 and 100

Equality

Definition: Two sets are equal if and only if they have the same elements.

Example:

• $\{1,2,3\} = \{3,1,2\} = \{1,2,1,3,2\}$

Note: Duplicates don't contribute anything new to a set, so remove them. The order of the elements in a set doesn't contribute anything new.

Example: Are {1,2,3,4} and {1,2,2,4} equal?
No!

Special sets

Special sets:

- The <u>universal set</u> is denoted by U: the set of all objects under the consideration.
- The empty set is denoted as \emptyset or $\{\}$.

A Subset

 Definition: A set A is said to be a subset of B if and only if every element of A is also an element of B. We use A ⊆ B to indicate A is a subset of B.

Alternate way to define A is a subset of B:

$$\forall x (x \in A) \rightarrow (x \in B)$$

Empty set/Subset properties

Theorem $\emptyset \subseteq S$

Empty set is a subset of any set.

Proof:

- Recall the definition of a subset: all elements of a set A must be also elements of B: ∀x (x ∈ A → x ∈ B).
- We must show the following implication holds for any S $\forall x (x \in \emptyset \rightarrow x \in S)$
- Since the empty set does not contain any element, x ∈ Ø is always False
- Then the implication is always True.

End of proof

Subset properties

Theorem: $S \subseteq S$

Any set S is a subset of itself

Proof:

- the definition of a subset says: all elements of a set A must be also elements of B: ∀x (x ∈ A → x ∈ B).
- Applying this to S we get:
- $\forall x (x \in S \rightarrow x \in S)$ which is trivially **True**
- End of proof

Note on equivalence:

Two sets are equal if each is a subset of the other set.

A proper subset

<u>Definition</u>: A set A is said to be a **proper subset** of B if and only if $A \subseteq B$ and $A \neq B$. We denote that A is a proper subset of B with the notation $A \subseteq B$.

Example: $A = \{1,2,3\}$ $B = \{1,2,3,4,5\}$

Is: $A \subset B$? Yes.

Power set

Definition: Given a set S, the **power set** of S is the set of all subsets of S. The power set is denoted by P(S).

Examples:

- Assume an empty set ∅
- What is the power set of \emptyset ? $P(\emptyset) = {\emptyset}$
- What is the cardinality of $P(\emptyset)$? $|P(\emptyset)| = 1$.
- Assume set {1}
- $P(\{1\}) = \{\emptyset, \{1\}\}$
- $|P(\{1\})| = 2$

Power set

- $P(\{1\}) = \{\emptyset, \{1\}\}$
- $|P(\{1\})| = 2$
- Assume {1,2}
- $P(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$
- $|P(\{1,2\})| = 4$
- Assume {1,2,3}
- $P(\{1,2,3\}) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$
- $|P(\{1,2,3\})| = 8$
- If S is a set with |S| = n then |P(S)| = ?